
Analysis

Security of Ibex

Paul Gerhart, Paul Rösler & Dominique Schröder
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1 Abstract

This document delves into a comprehensive analysis of the security features of
Threema’s novel cryptographic protocol, known as Ibex. The analysis was con-
ducted by a team of experts comprising Paul Gerhart, Paul Rösler, and Dominique
Schröder. To ensure the accuracy and completeness of their evaluation, the Threema
team provided the researchers with the necessary specifications and actively ad-
dressed any queries that arose during the analysis.

The evaluation of the Ibex protocol was carried out independently, adhering to
the provable security approach, which serves as the gold standard in the field. By
following this rigorous methodology, the researchers aimed to assess the robustness
and reliability of Threema’s security measures.

The document provides a comprehensive analysis of Threema’s Ibex protocol in
a structured manner. It introduces the messenger and establishes the context for
evaluation. It explains the basics of cryptography, including number theory and
the communication model. The Ibex functionality is formalized, focusing on its key
components and operations in Section 4. The document then addresses the security
properties aimed to be achieved by the Ibex protocol in Section 5. It outlines specific
goals and requirements for ensuring high security and privacy for Threema users.
Section 6 offers a detailed formalization of the Ibex protocol, covering its design,
algorithms, and secure communication mechanisms. Section 7 presents the security
proof for the Ibex protocol. Moving on, Section 8 explores practical instantiations
of the cryptographic primitives used in the Ibex protocol. Lastly, Section 9 provides
recommendations for future development and enhancement of the Ibex protocol.

1.1 Summary of the Findings

The security analysis covers various important properties to ensure the robustness
of the Ibex protocol. The analysis includes an assessment of confidentiality, which
focuses on preserving authorized restrictions on information access and disclosure
and protecting personal privacy and proprietary information. The analysis also ex-
amines authenticity, guaranteeing that the origin of operations or data cannot be
tampered with. Lastly, forward security is evaluated, ensuring that past communi-
cations remain secure even if a party’s long-term secret keys are compromised in the
future. Our formal security analysis did not reveal any flaws in the design of Ibex.

More specifically, we show that an efficient attacker capable of breaking one of
the security properties of the Ibex protocol would also break the Gap-Diffie-
Hellman (GDH) problem. Since it is assumed that the GDH problem is hard,
which means it cannot be broken by any adversary in polynomial time, there
can be no efficient adversary against Ibex.

2 Introduction

This section provides an introduction to messengers and their benefits compared to
traditional forms of communication. Additionally, we provide a high-level overview
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of key exchange protocols and secure channels, which are the main building block
in secure messaging protocols.

2.1 Introduction to Messengers

A messenger is a software or application that enables users to exchange messages
in real-time. It can be used for personal or professional purposes and can include
various features such as text messaging, voice and video calls, file sharing, and more.

mBob mAlice

???

Modern messengers offer several benefits compared to traditional forms of com-
munication like email, SMS, or phone calls. These benefits include:

Privacy A secure messenger can protect message metadata from being collected
and analyzed by third parties, including sender and receiver information, lo-
cation, and timestamps.

End-to-End Encryption Modern messengers use end-to-end encryption (E2EE)
to secure messages and other data. This ensures that only the sender and
recipient can read the content of the message, and no one else, including the
messenger service provider, can access it.

Secure Authentication Messengers use secure authentication protocols to verify
user identities, ensuring that only authorized users can access the service and
exchange messages.

Messengers rely on a secure messaging protocol (SMP) to achieve these benefits.
An SMP is a set of procedures that utilize cryptographic schemes to send and
receive messages (and other data types like files, etc.). An SMP protocol outlines
the creation, distribution, authentication, usage, and deletion of cryptographic keys,
message preparation (encryption, authentication, etc.) for transmission, and the
processing of received packets (decryption, verification, etc.).

2.2 High-Level Overview of the Cryptographic Goals of Threema

In this section, we give a high-level overview of the cryptographic goals of Threema.
In a messaging application, multiple users wish to interact with each other securely.
Interacting means that the users wish to send and receive chat messages, send files,
or have a call using the messaging application. While calls are clearly only feasible
if both users are online, sending files or receiving chat messages should also be

Paul Gerhart, Paul Rösler & Dominique Schröder July 30, 2023
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possible if the other communication party is offline. To enable this asynchronous
communication, the communicating parties interact with a central server instead
of directly talking to each other. This server can be assumed to be online all the
time, and therefore, asynchronous communication is possible. In a perfect world, we
trust this central server completely, and now the communication problem would be
solved. However, in practice, we wish to achieve security and privacy goals without
relying on the trusted central party.

To achieve these goals, we will leverage the benefits of availability given by the cen-
tral server with those of private communication obtained by modern cryptographic
techniques. Cryptographic techniques are used to realize confidentiality, integrity,
and authenticity. Confidentiality ensures that the communication remains private
and inaccessible to third parties. We can achieve confidentiality by encrypting the
exchanged data using a secret key that is exchanged between the communicating
parties. Meanwhile, integrity guarantees that the communication remains unaltered
and cannot be tampered with by any unauthorized third party. We can achieve
integrity by making our encrypted data tamper-resistant using a message authenti-
cation code. Lastly, authenticity ensures that the communicating parties can always
be certain of the identity of the other party involved. We can achieve authenticity
by exchanging public key pairs. In a synchronous setting, this blueprint may lead
to a decent messaging protocol. However, we want our messaging application to
allow asynchronous communication and enable communication between all users.
Therefore, we have to find a way to exchange secret keys between users that have
never talked to each other in an authenticated manner such that any eavesdropping
party can not learn the secret key. Even if this requirement seems to be impossible,
cryptographic key exchange protocols satisfy it. We give a more formal descrip-
tion of the used functionality in Section 4 and an overview of the security goals in
Section 5.

3 Basics

In this section, we introduce the cryptographic fundamentals used in the technical
details presented in this work. These basics include provable security, mathematical
foundations, and cryptographic hardness assumptions. The formal description of
these fundamentals is crucial for the verifiability of the technical aspects of the
subsequent sections.
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3.1 Provable Security

This section introduces the concept of provable security, the de facto standard for
modern security analysis. First, we describe the formalization of cryptographic
schemes in Section 3.1.1. This formalization involves the description of the inter-
faces, which is discussed in Section 3.1.2. Our analysis formalizes the security w.r.t.
cryptographic games, which we introduce in Section 3.1.3. The security of cryp-
tographic schemes is reduced to some hardness assumption, which means that a
security breach in our model results in an algorithm that breaks some underlying
hard problems. We discuss this technique in Section 3.1.4.

3.1.1 Formalizing Cryptographic Schemes and Protocols

The formalization of cryptographic schemes consists of three steps. The first step
formalizes what the cryptographic scheme does, which is typically done in the formal
description of the functionality. The cryptographic functionality specifies the inter-
faces, which formalizes the individual algorithms that realize the functionality. As
an example, let us consider an encryption scheme. Intuitively, an encryption scheme
converts something readable, the plaintext, into an object that does not leak any
(non-trivial) information about the original text. We call this output the cipher-
text. While this describes the high-level functionality of the encryption algorithm,
it does not tell us if an encryption involves more algorithms. It also makes no state-
ment about the inputs of these algorithms. The formal definition of a cryptographic
primitive can be seen as the definition of a class in any programming language. The
formalization of the interface then concludes with the definition of the correctness
that describes the behavior, i.e., it formalizes the honest execution of the actual
scheme.

The second part then consists of the formalization of the security properties,
which is typically done as a cryptographic game (see Section 3.1.3). A cryptographic
game is a mind experiment between an adversary and a challenger. Intuitively, the
adversary is attacking the cryptographic scheme, and the challenger provides the
interfaces for the adversary. Moreover, once the adversary finishes its attack by
returning some information that serves as an indication for breaking the scheme,
the challenger evaluates the output and indicates whether it corresponds to a valid
attack. The possibilities of the attacker in the cryptographic game must match
as close as possible to its capabilities in the real world. If the model is too weak,
then the attacker might execute an attack that the model does not cover. And
because it might not be covered, it might result in cryptographic schemes that are
vulnerable against that attack and, therefore, insecure from a practical perspective.
On the other hand, if the model is too strong, then we might have the problem that
either no cryptographic scheme exists that satisfies this definition, or it might be
too inefficient and, therefore, not be usable in practice.

The third part consists of a cryptographic construction and its security evalu-
ation. The cryptographic construction is an algorithmic instantiation of the indi-
vidual interfaces. In other words, it precisely says which computations must be
performed to realize the interfaces. Finally, the security evaluation shows that the
cryptographic scheme is secure with respect to the security model. In many cases,
proving the scheme’s security results in a security reduction to some hard underlying
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problems. Intuitively, this means that breaking the security of the cryptographic
scheme with respect to the model is as difficult as solving the underlying hard prob-
lem. Because it is unknown how to solve the underlying hard problems efficiently,
the security of the cryptographic scheme follows.

3.1.2 Definition of the Interfaces

The formalization of the interfaces usually starts with an intuition of a certain real-
world application. As an example, consider the case shown in Figure 1 in which
Alice and Bob wish to exchange encrypted messages. To realize this application,

Alice Bob

Secret Key : k Secret Key : k

c← Enc(k,m)

c

m← Dec(k, c)

Figure 1: Intuitive description of Alice sending Bob an encrypted message.

Alice and Bob need an algorithm to encrypt and decrypt messages. For each of these
operations, we define the algorithm Enc for encryption and Dec for decryption; the
inputs of each algorithm are shown in Figure 1. Since each algorithm requires some
private key as input, we must describe an algorithm Gen to compute this key. All
algorithms together Π = (Gen,Enc,Dec) describe the interfaces of an encryption
scheme. Once the intuitive description is finished, we need to specify the function-
ality, i.e., each algorithm’s precise input and output behavior. Finally, we describe
the cryptographic scheme’s expected (honest) behavior, called correctness or com-
pleteness. In our running example, correctness implies that the (honest) decryption
of an honestly generated ciphertext yields the plaintext.

3.1.3 Cryptographic Games

The basic idea of a game-based security notion is to describe the security properties
as a game between an adversary and a challenger. The adversary’s goal is to attack
a cryptographic scheme, and to do so, he expects to interact with the scheme to
some degree. For example, suppose that the adversary is attacking an encryption
scheme, and let’s assume that the attacker needs some ciphertext to carry out the
attack. Where is the ciphertext coming from? This is where the challenge comes into
play. The challenger generates the entire “world” for the adversary and provides all
interfaces that the adversary expects. Eventually, the adversary finishes the attack
and outputs some value. The challenger then evaluates this output and tells if it is
a valid attack (in this formal model) or not.

We explain this intuitive idea with the example shown in Figure 2. The left-
hand side shows the adversary attacking some cryptographic scheme Π. In our
running example, the adversary A attacks some encryption scheme. According to
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Security of Ibex Page 7 of 38

get

c

break

Imaginary game

ExpΠ,A(λ)

1 : state← Setup(1λ)

2 : (get, st)← A(1λ)
3 : c← Compute(state, get)

4 : break← A(st, c)
5 : b← Eval(state, c, break)

6 : return b

Figure 2: Visualization of a cryptographic game and the corresponding formaliza-
tion.

our imaginary security notion, the only possibility for the adversary to attack the
scheme is by requesting a single ciphertext c. To do so, the adversary sends the
message get to the challenger, who responds with some ciphertext c. Eventually,
the attacker sends some value break to the challenger and stops. The challenger
then analyzes this value and outputs a decision whether break is a valid attack or
not.

This intuitive interaction/game is formalized in a cryptographic game shown on
the right-hand side. Formally, this game is a random variable that is called Exp,
and it binds both the cryptographic scheme Π and the adversary A to it. The game
consists of several steps executed from Lines 1 to 6. In the first step, the game
generates some private state variable called state. This step might correspond to
creating some system parameters and possibly some (private) cryptographic keys
that may not be shared with the adversary. In the second step, the adversary is
initialized with the security parameter 1λ (see Section 3.2.1 for a description and
explanation of this parameter) as input and he outputs the message get together
with some private state st. This line corresponds to the first message in the intuitive
execution. The private state reflects the knowledge of the attacker. Afterward, in
Line 3, the challenger computes the value c using the private state state and possibly
the message get. Subsequently, the attacker is executed on its private state st and
on c, and he returns some string break. This string is completely arbitrary at this
point. Depending on the security notion, it may be some message, some bit, or a
signature. In Line 5, the challenger checks if break is a valid attack. In this case,
this check involves some algorithm Eval that takes as input the state information
state and the values c and break. The output of this algorithm is a bit b, with the
obvious meaning.

The last step towards formalizing a game-based security notion is the definition
of success, which might look as follows:

The cryptographic scheme Π is secure, if for all efficient adversaries A the
following holds:

Pr
[
ExpΠ,A(λ) = 1

]
≤ 1/2 + negl(λ),

where negl(λ) is a negligible function in the security parameter λ and where
the probability is taken over the random choices of A and coin tosses of Π.
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The formalization says that the adversary’s success probability should be very
small. However, there seems to be a trivial attack in this example by outputting a
random bit. Thus, simply guessing, the attacker wins this game with a probability
of at least 1/2. The observation here is that guessing the bit does not help the
adversary either, i.e., by guessing, he does not learn any meaningful information.
However, if the attacker wins the game by significantly winning the game with a
higher probability than 1/2, he learns some non-trivial information. Therefore, this
definition says that the adversary wins the game if he can break the security non-
negligibly (cf. Section 3.2.1) bigger than 1/2, which essentially means better than
guessing.

3.1.4 Reduction Proofs

We require the cryptographic schemes used in practical protocols to be provably
secure. To show that a cryptographic construction Π is computationally secure,
we relate its security to one of the (unproven) cryptographic hardness assumptions.
This technique is denoted as reduction and works as follows. First, the construction
we wish to prove realizes the interfaces and usually builds upon simple (unproven)
assumptions. Some theorem will be of the form “Assume that some problem X is
hard, then the construction Π is secure with respect to definition Y ”. The first step
of this proof technique is to assume towards contradiction that our construction Π
is insecure with respect to Definition Y . If this is the case, an efficient adversary A
exists against the scheme Π by definition. Note that the definition tells us what the
adversary is expecting and the conditions under which he succeeds. Then we show
how to turn the adversary A into an algorithm B against the underlying problem X.
By doing so, we can argue the security of our scheme as follows. If we assume that
the problem X underlying the hardness assumption is infeasible, the algorithm B
can not exist. This implies that the attacker A against the scheme Π (from which B
derived his solution for the problem X) does not exist. Therefore, the construction
Π is secure. In particular, a reduction proof proceeds via the following steps:

AInstance of

scheme Π

”break”: so-

lution to Π

Reduction BInstance of

problem X

Solution

to X

Figure 3: Proof by Reduction [1].

1. Fix some efficient (PPT) adversary A attacking Π. Denote the adversary’s
success probability by ϵ(λ).
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2. Construct from A an efficient algorithm B for the problem X (called “reduc-
tion”). B uses A as a subroutine but does not know anything about how A
works. The only thing B knows is that A expects to attack the cryptographic
construction Π. So, given some input instance x of the problem X, algorithm
B will simulate for A an instance of Π such that

a) As far as A can tell, he interacts with Π. The view of A when he is used
as a subroutine of B should be distributed identically to (or at least close
to) the view of A when he interacts with Π.

b) If A succeeds in “breaking” the instance of Π that B is simulating, B can
derive a solution to the instance x of the problem X with at least inverse
polynomial probability 1/p(λ).

3. Taking a) and b) together, we find that B solves the problem X with proba-
bility ≥ ϵ(λ)/p(λ). If ϵ(λ) is non-negligible and A is efficient, B is an efficient
algorithm that solves the problem X with non-negligible probability. This
contradicts our initial assumption.

4. Given our assumption regarding problem X, we conclude that no efficient
adversary A can succeed in breaking Π with non-negligible probability. Stated
differently, Π is computationally secure.

The above proof is illustrated by Figure 3.

3.2 Hardness Assumptions and Mathematical Foundations

Most cryptographic schemes are not unconditionally secure. Instead, the security
of the schemes relies on unproven hardness assumptions that are widely believed
to hold. The security of these hardness assumptions is analyzed independently.
In many cases, cryptoanalysis did not make significant progress, sometimes over
hundreds of years, as in the case of the famous factoring problem, where the attacker
receives as input the product N = pq of two (large) primes p and q, and its task is
to find these primes.

Other relaxations are the restriction of the running time of the adversary and
its success probability. Modern cryptographic schemes assume the running time of
the adversary is bounded by a polynomial that might be arbitrarily large. For most
practical applications, this assumption is perfectly fine considering a running time of,
e.g., hundred years exceeds the lifetime of most humans. The use of cryptographic
keys leads to the fact that there is a small residual risk with which the attacker
can guess this key. For example, if the key has 128 bits, then the attacker might
guess this key with probability 2128, which is a number with 39 decimal digits. This
number can also be approximated with 3.4 × 1038. In other words, the probability
that the attacker guesses that key is 1

3.4×1038
. To better grasp this number, we can use

the estimated number of atoms in the universe as a comparison, which is estimated
to range from between 1078 to 1082 atoms. In many cases, this success probability
depends on the computational power of the adversary, which doubles according to
Moore’s law every two years. This increase in computational power is expressed
with the security parameter and covered by negligible functions, which we introduce
in Section 3.2.1.
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3.2.1 Security Parameter and Negligible Functions

A cryptographic security parameter 1λ is a value used to determine the strength
and security of a cryptographic algorithm or protocol. The security parameter is
typically encoded in unary. Its value determines various aspects of the cryptographic
scheme, such as the length of keys, the number of rounds in a cipher, or the size
of a hash function. Unary encoding is a technique used in complexity theory and
cryptography to ensure that certain algorithms and protocols run in polynomial
time. By encoding a security parameter in unary, the length of the input to the
algorithm or protocol is proportional to the parameter’s value. This ensures that
any algorithms or protocols that use the parameter will have a polynomial running
time in the parameter value, since the input length is polynomial in the parameter
value.

For example, if the security parameter is λ, then encoding it in unary results
in a string of λ ones (“111...1”). Any algorithm or protocol that uses the security
parameter would take a time polynomial in λ to process this input. This helps to
ensure that the algorithm or protocol is efficient and secure, as it limits the potential
for attacks based on exponential or superpolynomial running times.

Modern cryptography can be broken with some small probability. To formalize
what “small” means, we introduce the notion of negligible functions. These are
functions that are smaller than the inverse of any polynomial. More formally:

Definition 1 (Negligible Function). A function f is negligible if for every polynomial
p(·) there exists N such that for all integers λ > N it holds that

|f(λ)| < 1

|p(λ)| .

To give an intuition for this definition, we propose the following examples:

2−λ This is a negligible function since it is exponential and exponential functions
rise faster than polynomials.

λ ∈ N For λ ̸= 0 this is not a negligible function as limn→∞ |p(λ)| = ∞ > λ. For
λ = 0 this is negligible with the same argument.

1
p2

This is not a negligible function, since the polynomial 1
p3
, it holds that limn→∞

p2(λ)
p3(λ)

=
1

p(λ)
= 0. So there exists a N such that 1

p(λ)2
≥ 1

|p(λ)|3 for λ > N .

Proposition 1. Let negl(λ)1 and negl(λ)2 be negligible functions. Then:

• negl(λ)3 = negl(λ)1 + negl(λ)2 is negligible.

• For any positive polynomial p, the function negl4 = p(λ) ·negl(λ)1 is negligible.

3.2.2 Mathematical Foundations

A group is a mathematical structure consisting of a set G and an operation ⋆ :
G × G → G. The basic fact here is that, if we apply the group operation to two
group elements, we will obtain another group element. Furthermore, the group must
contain a neutral element id and, for each group element a an inverse element a−1

with a ⋆ a−1 = id. An illustrating example is that of the symmetry group of a
geometric object, e.g., a square.
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The square has eight symmetries: Four rotational symmetries and four reflection
symmetries.
With respect to rotation, we can rotate the square by 90, 180, 270 or 360 degree
without changing its appearance. With respect to reflection, we can reflect the
square on each of the four axes depicted below.

, , ,

We now give a formal definition of the term group.

Definition 2 (Group). A group (G, ⋆) consists of a set G and an operation ⋆ :
G×G→ G fulfilling the following properties

• Closure: ∀ a, b ∈ G we have a ⋆ b ∈ G

• Associativity: a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c ∀ a, b, c ∈ G

• neutral element: ∃ [0] ∈ G such that [0] ⋆ a = a ⋆ [0] = a ∀ a ∈ G

• inverse elements: ∀ a ∈ G ∃ a−1 ∈ G such that a ⋆ a−1 = a−1 ⋆ a = 1.

It can be shown that the neutral element 1 of the groupG is unique. Furthermore,
for every a ∈ G, the inverse element a−1 is uniquely determined.

3.2.3 The Discrete Logarithm Assumption

The first computational assumption used within this analysis is the discrete log-
arithm assumption. Intuitively, this problem says that given an element gx, it is
computationally difficult to compute the exponent x (cf. left part of Figure 4).

DLogA,GGen(λ)

1 : (G, [1], q)← GGen(1λ)

2 : x←$ Zq

3 : x′ ← A(G, q, [1], [x])

4 : return ([x] = [x′])

DDHA,GGen(λ)

1 : (G, [1], q)← GGen(1λ)

2 : x, y, c0 ←$ Zq

3 : c1 := xy

4 : b←$ {0, 1}
5 : b′ ← A(G, q, [1], [x], [y], [cb])

6 : return (b = b′)

Figure 4: Cryptographic games for the discrete logarithm, and decisional Diffie-
Hellman assumption.
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Notation Description

G Cyclic groups of order q
[1] A generator of G
[0] Identity element of G
[a], a ∈ Zq Group element in G with discrete logarithm a ∈ Zq with

respect to [1]
[A] + [B] = [A+B] Entrywise group operation
c · [A] := [A] · c := [c · A] Exponentiation of each entry of [A] by c

Table 1: Summary of the notation for group operations

In general, the difficulty of computational problems always depends on an under-
lying structure, in most cases, a group. In fact, for the discrete logarithm problem,
there are some groups known in which the problem is computationally easy, and
in other groups, the problem is believed to be hard. Therefore, we first define the
notion of a group generation algorithm, and all hardness assumptions will always
hold for some group that is generated by that algorithm. Table 1 summarizes the
notion we use in this analysis.

Definition 3 (Group generation algorithm). Let (G, [1], q)← GGen(1λ) be an effi-
cient generic algorithm which, on input of a security parameter 1λ, outputs a cyclic
group G of order q (q is a λ-bit integer) with generator [1] ∈ G.

With the definition of the group generation algorithm, we introduce the discrete
logarithm problem.

Definition 4 (Discrete logarithm problem). The discrete logarithm problem with
regard to GGen is hard if, for all PPT adversaries A, there exists a negligible function
negl(λ) such that

Pr
[
DLogA,GGen(λ) = 1

]
≤ negl(λ),

where the game DLogA,GGen is defined in Figure 4.

Examples The discrete logarithm problem can be defined in any cyclic group G.
However, it is not equally hard in all groups. In this section, we give some examples
of cyclic groups which are suited or not suited for discrete logarithm cryptography.

• In the cyclic group (Zp,+) for p being prime, the discrete logarithm problem
is easy. Given a generator g ∈ Zp and another group element h = a · g, we can
easily find the secret value a using the extended euclidean algorithm. h = a · g
mod p implies that h = a · g + k · p holds in Z. Since gcd(a, p) = 1 holds for
any a ∈ Zp, we can use the extended euclidean algorithm to find integers a′

and k′ such that a′ · g+k′ ·p = 1. Therefore we have ha′ · g+hk′ ·p = h, which
implies that ha′ mod p is a solution to the given discrete logarithm problem.

• In the cyclic group (Z⋆
p, ·), the discrete logarithm problem is believed to be

hard. However, the group (Z⋆
p, ·) is not a group of prime order. This enables

the use of special algorithms like the Pohlig-Hellman algorithm, which make
use of the factorization of the group order to speed up attacks against the
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discrete logarithm problem. Therefore we often use subgroups of Z⋆
p of prime

order in cryptographic applications.

• In a cyclic subgroup of the group of points on an elliptic curve E(Zp), the dis-
crete logarithm problem is believed to be hard. Furthermore, some algorithms
for solving discrete logarithms in Z⋆

p (e.g., the index-calculus techniques) do
not work in this case. This allows us to choose smaller parameters for the
cryptographic schemes working in E(Zp).

3.2.4 The Diffie-Hellman Assumption

For some proofs, the discrete logarithm problem is insufficient, and stronger com-
putational assumptions are required. Therefore, a widely used assumption is the
decisional Diffie-Hellman assumption we introduce in the following. Intuitively, the
decisional Diffie-Hellman problem says that given the tuple gx, gy, gz, no efficient
algorithm can tell if z = xy or if z is a random element in Zp.

Definition 5 (Decisional Diffie-Hellman (DDH) problem). The Decisional Diffie-
Hellman problem with regard to GGen is said to be hard if, for any PPT adversary
A, there exists a negligible function negl(λ) such that

Pr[DDHA,GGen(λ) = 1]− 1

2
≤ negl(λ),

where the game DDHA,GGen is defined in Figure 4.

The DDH problem says that there exists an algorithm GGen relative to which
the DDH problem is hard. Obviously, if the discrete logarithm problem with regard
to GGen is easy, the same is true for DDH.

3.2.5 The Gap Diffie-Hellman Assumption

Intuitively, the Gap Diffie-Hellman assumption [5] says that given a triple (g, ga, gb),
no efficient algorithm can find the element C = gab with the help of a Decisional
Diffie-Hellman Oracle.

Definition 6 (Gap Diffie-Hellman (GDH) problem). The Gap Diffie-Hellman prob-
lem with regard to GGen [5] is said to be hard if, for any PPT adversary A, there
exists a negligible function negl(λ) such that

Pr[GDHA,GGen(λ) = 1]− 1

2
≤ negl(λ),

where the game GDHA,GGen is defined in Figure 5.

Obviously, if the discrete logarithm problem with regard to GGen is easy, the
same is true for GDH.
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GDHA,GGen(λ)

1 : (G, [1], q)← GGen(1λ)

2 : x, y ←$ Zq

3 : [z]← AODDH(G, [1], [x], [y])

4 : return ([z] = [xy])

ODDH([c], [x], [y])

1 : return [xy] = [c]

Figure 5: Cryptographic game for the Gap Diffie-Hellman assumption.

3.3 The Diffie-Hellman Key Exchange

The Diffie-Hellman key exchange was invented in 1976; it is used in TLS 1.3 as
the default key exchange protocol and serves as the fundamental building block
for this protocol. The security is based on the DDH assumption we introduced in
Section 3.2.3. In the Diffie-Hellman key exchange protocol, the two parties Alice and
Bob exchange two values hAlice = gx and hBob = gy for random exponents x, y ∈ Zq.
Having access to hAlice and y, Bob can now compute gxy locally. The same key can
be computed by Alice knowing hBob and x. Each eavesdropping party that sees only
the transcript Trans = (G, g, q, hAlice, hBob) and can tell this resulting key gxy apart
from a randomly sampled key can also break the CDH assumption on this instance.
Therefore, DH key exchange is secure as long as CDH holds. We give a formal
description of the protocol in Figure 6.

(G, q, g)← GGen(1λ)
x←$ Zq

hA ← gx

kAlice ← hx
B

y ←$ Zq

hB ← gy

kBob ← hy
A

kAlice kBob

G, q, g, hA

hB

Figure 6: The Diffie-Hellman Key Exchange Protocol

Theorem 1. If the decisional Diffie-Hellman problem is hard relative to GGen, then
the Diffie-Hellman key exchange protocol Π is secure in the presence of an eaves-
dropper (w.r.t. the modified experiment KE′eav

A,Π(λ)).

The Diffie-Hellman key exchange protocol is correct, if kAlice = kBob:

kAlice = hx
B = (gy)x = gx·y

kBob = hy
A = (gx)y = gx·y
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3.4 The Random Oracle Model

Cryptographic schemes often require a hash function that is both collision resis-
tant and truly random. However, a single function cannot have both properties
simultaneously. Furthermore, since the key of a hash function is usually public, a
pseudorandom function is not a viable solution. To address this challenge, three
possible solutions have been proposed: relying on schemes that can be proven se-
cure without the idealized primitive, employing schemes that require the idealized
primitive without formal proof, or adopting a “middle ground” approach through
the Random Oracle (RO) model. The RO model has a long history in cryptography
and was first formalized by Bellare and Rogaway [10]. The RO model assumes the
existence of a public oracle H that implements a truly random function. It is not
hard to see that such an oracle cannot exist in reality, but this model provides a
formal methodology to design and validate the security of cryptographic schemes
following a typical two-step approach [1]:

1. The first step is the design of the scheme and providing a proof of security in
the RO model. The construction might be based on “standard” cryptographic
assumptions.

2. To use the scheme in the real world, each party uses a real-world hash function
H ′ (such as e.g., BLAKE2b) and we adjust the scheme appropriately. When-
ever the scheme asks to evaluate the RO on a value x, the function H ′(x) is
computed locally.

The intention is that the hash function sufficiently emulates the Random Oracle
(RO) to the extent that the security proof remains applicable in the standard model.
To a certain degree, this intention is satisfied by the use of BLAKE2b as we show
in Section 8.

4 Formalization of the Functionality

The formalization of the interfaces may change during the formalization of
the protocol.

Given the high-level description from the Ibex protocol, this section provides a
formalization of the functionality of Ibex and its main core cryptographic compo-
nents, such as the protocols for key exchange and secure channels. This formalization
serves as the basis of the security analysis of Section 7.

4.1 Functionality of Ibex

We recall the manifold use cases of Threema, where multiple users want to exchange
data securely in an asynchronous setting without the need of sharing private infor-
mation in the first place.
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To achieve the desired functionality, we split the communication into two parts: In
the first part, two users that do not share any private information want to authenti-
cate each other and agree on a shared secret. In the second part, the two users want
to use the shared secret they agreed on to exchange the data securely. In Ibex, the
first part is realized using a key exchange protocol called 4DH, and the second part
is realized using a secure channel protocol.

In our formalization, we split the key exchange and channel components as fol-
lows: whenever a new symmetric key for authenticated encryption is computed, this
key computation is part of the key exchange, and only the payload encryption is part
of the channel. As a result, the key exchange component is actually a continuous
key exchange. We now formalize these two protocols.

4.2 Continuous Key Exchange Protocols

On an intuitive level, a continuous key exchange protocol allows two parties to agree
on a series of shared keys that are hidden from any eavesdropping adversary. We
build a security experiment for continuous key exchange protocols according to this
intuition as follows: In the first step, two parties, Alice and Bob, run the two-party
key exchange protocol and output the transcript Trans of this protocol run, as well
as resulting keys k. The transcript is all the information that Alice and Bob exchange
during the execution of the protocol. Then we sample a random bit b. If b = 0,
we set each challenge key k′ to be an original output of the computation of Alice
and Bob. If the bit is 1, we sample the challenge keys k′ to be random. Finally, the
adversary gets access to the challenge keys k′ and has to decide if it is a randomly
sampled one or the output of the transcript Trans. If the continuous key exchange
protocol is correct, then the series of resulting keys kAlice of Alice and kBob of Bob are
the same.

kAlice kBob
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The description given here suffices to get an intuition of how continuous key exchange
protocols work. The protocol Ibex has a more complex application and, therefore,
we introduce the following more complex interface.

Definition 7 (Continuous Key Exchange Protocol). A continuous key exchange
protocol ΠKE = (GenKE, sendKE, recvKE) is defined as follows

(sk, pk)← GenKE(λ): The generation algorithm GenKE is a PPT algorithm that on
input of the security parameter λ outputs a long-term key pair (sk, pk) con-
sisting of a secret key sk and the corresponding public key pk.

(st′S, k, c)← sendKE(stS, skS, pkR): The sending algorithm sendKE is a PPT algorithm
that on input of a long-term secret key skS and a state of ephemeral secrets
stS of the sender as well as a long-term public key pkR of the receiver outputs
an updated state st′S of the sender, a shared symmetric key k, and a ciphertext
c.

(st′R, k, pkS)← recvKE(stR, skR, c): The receiving algorithm recvKE is a DPT algo-
rithm that on input of a long-term secret key skR and a state of ephemeral
secrets stR of the receiver as well as a ciphertext c outputs an updated state
st′R of the receiver, a shared symmetric key k, and a long-term public key pkS
of the corresponding sender.

4.3 Channel Protocols

A vital function of modern communication infrastructure is to ensure the protection
of data during transmission in various connections each day. At a fundamental
level, a secure channel is a communication channel that guarantees the protection of
data transmitted over it from unauthorized access, tampering, and interception by
malicious third parties. To establish secure channels, cryptographic protocols that
utilize encryption and authentication techniques are commonly used to protect the
data in transit. When a party Alice wants to send a message over a secure channel
to Bob, this works the following way on a high level: Alice holds a state stateAlice
and a message m, and Bob holds his state stateBob. The sender, Alice, encrypts the
tuple (stateAlice,m) and obtains thereby the values (state′Alice, c), where state′Alice is
her updated state, and c is the corresponding ciphertext to the message m. When
Bob receives a ciphertext c, he uses the tuple (stateBob, c) to decrypt the ciphertext
c to a message m′. This decryption leads to a newly updated state state′Bob.

Definition 8 (Secure Channel). A secure channel protocol ΠSC = (GenSC, sendSC,
recvSC) is defined as follows:

(stateAlice, stateBob)← GenSC(λ): The state generation algorithm is a PPT algorithm
that on input of the security parameter λ outputs the states (stateAlice, stateBob)
of Alice, resp. Bob.

(state′, c)← sendSC(state,m): The sending algorithm sendSC is a PPT algorithm that
on input of a state state and a message m outputs an updated state state′ and
a ciphertext c.
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(state′,m, ctr) ← recvSC(state, c): The receiving algorithm recvSC is a DPT algorithm
that on input of a state state and a ciphertext c outputs an updated state state′

and a message m.

5 Formalization of the Security Properties

The core security properties that a messaging system should provide are confidential-
ity, integrity, and authenticity. To analyze the security of such a system, it makes
sense to define and analyze the security properties of its underlying components.
This modular approach simplifies and clarifies the analysis.

5.1 Security Properties in General

Confidentiality preserves authorized restrictions on information access and dis-
closure, including means for protecting personal privacy and proprietary in-
formation.

Integrity guards against improper information modification or destruction. We
distinguish between data integrity and system integrity.

Data Integrity The property that data has not been altered in an unauthorized
manner. Data integrity covers data in storage, during processing, and while
in transit.

System Integrity The quality that a system has when it performs its intended
function in an unimpaired manner, free from unauthorized manipulation of
the system, whether intentional or accidental.

Authenticity guarantees that the origin of an operation or the source of data
cannot be altered.

Forward Security When secret key material is compromised, all information that
was protected by that key material before the compromise remains secure; in-
formation that is protected by that key material after the compromise may be-
come insecure. Forward security is an orthogonal dimension to the prior secu-
rity guarantees. For example, confidentiality is extended by forward security—
and, thereby, usually called Forward Secrecy—when all past information re-
mains private and only future information is revealed due to the compromise
of the used key material. The naming in the cryptographic literature is re-
markably inconsistent by introducing several variants like ‘perfect’, ‘strong’,
‘weak’, etc. forward security, where the actual meaning is often ambiguous
and sometimes even counterintuitive1. For that reason, we only use the term
‘forward security’ in this document.

1See a discussion about the naming and distinction of ‘forward security’, ‘backward security’,
‘future security’, and ‘post-compromise security’ in [20]
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5.2 Security Properties of Continuous Key Exchange

We capture all security properties relevant to our analysis of the continuous key ex-
change protocol of Threema in one definition. For this, we consider the composition
of Threema’s 4DH protocol as well as the subsequent key update mechanism, as one
building block. Compactly, our definition requires that the keys that this building
block computes are indistinguishable from random keys even if future mid-term and
long-term key material is compromised at some point. Based on this definition, we
capture: Confidentiality of keys, Implicit Authentication of keys and users, Replay
Attack Resilience, and Forward Security of keys. The authentication property is
reached implicitly because the protocol does not abort upon an active attack by
a network adversary. Instead, the keys computed by the protocol participants are
independent of such an attack.

5.3 Game-based Definition for Continuous Key Exchange

For our formal definition, we provide a game that captures the above intuition. In
this game, an adversary can generate new parties, let parties establish keys with
other parties, let parties process manipulated ciphertexts—to model active network
attacks—, corrupt mid-term and long-term key material, and ask for key challenges.
As sketched above, the latter means that the adversary either obtains a real key
established between two parties or a random key. Based on this challenge, the
adversary has to guess which of both it obtained. Our upcoming proof will show
that guessing correctly is practically infeasible.

The sketched game is defined by specifying the following oracles that the adver-
sary can query to give the adversary full control of the execution environment:

Gen: Generates a new party in the environment. In practice, this models that a new
user is registered.

Send: Lets a party send to another party and, thereby, establish a new symmetric
key. In practice, this key is then used to encrypt a plaintext message to the
receiver. Due to our modular approach, the encryption step is captured in the
subsequent channel part.

Challenge: Lets a party send to another party and, thereby, establish a new sym-
metric key. In contrast to oracle Send, oracle Challenge either outputs the real
established key or a random key.

Recv: Lets a party receive a ciphertext. This ciphertext can be the output of oracles
Send or Challenge, or this ciphertext was crafted by the adversary to model
active network attacks. If algorithm RecvKE accepts an input ciphertext with
output pkj but party pkj never sent that ciphertext due to oracle queries
Send(j, i) or Challenge(j, i) or this ciphertext was received by an earlier query
to oracle Challenge(i, ·) already, then that ciphertext as well as all subsequent
ciphertexts in that session are considered out-of-sync (i.e., the opposite of
in-sync).

Corrupt: Compromises the long-term key as well as mid-term keys of a corrupted
party. This models that the party could unintentionally store these keys on a
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Security of Ibex Page 20 of 38

publicly accessible memory or that real-world attackers may obtain physical
access to victims’ devices or plant viruses thereon.

Game ExpbKE,A(λ)
00 n← 0
01 b′ ← A(1λ)
02 Return b′

Oracle Gen(λ)
03 n← n+ 1
04 (skn, pkn)← GenKE(1

λ)
05 Return pkn

Oracle Send(i, j)
06 (sti, k, c)← sendKE(sti, ski, pkj)
07 Return (k, c)

Oracle Challenge(i, j)
08 (sti, k0, c)← sendKE(sti, ski, pkj)
09 k1 ← {0, 1}λ
10 Return (kb, c)

Oracle Recv(i, c)
11 (sti, k, pk)← recvKE(sti, ski, c)
12 If in-sync: Return pk
13 Return (k, pk)

Oracle Corrupt(i)
14 Return (ski, sti)

Figure 7: Cryptographic game to define the security of continuous key exchange as
instantiated by 4DH.

These oracles are formally specified in Figure 7. Before we can define what
security means, we have to identify and exclude certain trivial winning conditions.
Under these conditions, it is easy to win the game, even for efficient adversaries.
However, these attacks are meaningless in practice:

1. After party i is corrupted, all keys established by subsequent queries to oracle
Challenge(·, i) are considered insecure.
Forward security only requires that past keys remain secure but not that future
keys will be secure again.

2. Similarly, after party i is corrupted, all keys established by earlier queries to
oracle Challenge(·, i) that were not received via corresponding queries to oracle
Recv(i, ·) are considered insecure.
By functionality, it is necessary that the corrupted secrets can compute keys
that were established by the communication partner but not yet received.

3. Furthermore, after party i is corrupted, all keys established by queries to oracle
Challenge(j, i) that were issued before partner j received a ciphertext from
party i via corresponding queries to oracle Recv(j, ·) are considered insecure.
The first half round-trip in a session only offers forward security from the
session initiator to the session responder but not vice versa (cf. 2DH vs. 4DH).

4. Finally, after party i is corrupted, all keys established by subsequent queries to
oracle Challenge(i, ·) are considered insecure. This attack is not trivial in gen-
eral2, but since Ibex uses symmetric secrets for deriving (future) challenge keys
(in established) sessions, a corruption of party i reveals future keys established
by i and to i.

2By using asymmetric secrets, the state of i would not reveal keys established by i.
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If any of the keys output by oracle Challenge is considered insecure, we let the
adversary automatically lose the game. For clarity and compactness, we refrain
from encoding these trivial winning conditions (and how they are prevented) in
Figure 7.

Based on this, we define security by requiring that it should be hard for an
adversary to correctly guess the random parameter bit b when terminating with
return value b′. More concretely:

Definition 9 (Secure Continuous Key Exchange). A continuous key exchange pro-
tocol KE is secure if the advantage

AdvexpKE,A(λ) :=
∣∣Pr[Exp0KE,A(λ) = 1]− Pr[Exp1KE,A(λ) = 1]

∣∣
is negligible for all PPT adversaries A.

5.4 Security Properties of Simple Channels

Since the continuous key exchange component already captures most of the desired
security properties, the channel notion considered here can be relatively simple: We
treat the channel as a basic authenticated encryption scheme. Such an authenticated
encryption scheme has to provide three basic properties: Confidentiality, Integrity,
and Explicit Authentication. Here, authentication is explicit because the recipient
must reject manipulated ciphertexts.

5.5 Game-based Definition for Authenticated Encryption

We adopt the established game-based notion of confidentiality and ciphertext-integrity
for authenticated encryption from [4]. The formal definitions can be found in Fig-
ure 8.

Game INT(A)
00 k← {0, 1}λ
01 Q← ∅
02 N← ∅
03 Invoke A
04 Stop with 0

Oracle Encrypt(n, ad,m)
05 Require n /∈ N
06 c← Enc(k, n, ad,m)
07 Q← Q ∪ {(n, ad, c)}
08 N← N ∪ {n}
09 Return c

Oracle Decrypt(n, ad, c)
10 m← Dec(k, n, ad, c)
11 If m = ⊥: Return ⊥
12 Reward (n, ad, c) /∈ Q
13 Return m

Game INDb(A)
14 k ← {0, 1}λ
15 Q← ∅
16 N← ∅
17 b′ ← A
18 Stop with b′

Oracle Encrypt(n, ad,m0,m1)
19 Require n /∈ N
20 Require |m0| = |m1|
21 c← Enc(k, n, ad,mb)
22 Q← Q ∪ {(n, ad, c)}
23 N← N ∪ {n}
24 Return c

Oracle Decrypt(n, ad, c)
25 m← Dec(k, n, ad, c)
26 If m = ⊥: Return ⊥
27 If (n, ad, c) ∈ Q:
28 m← ⋄
29 Return m

Figure 8: Cryptographic game to define the security of authenticated encryption.
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6 Formalization of the Protocol

This section describes the cryptographic protocol called Ibex. This protocol’s goal
is to establish a secure channel between two users. In subsection 6.1 an intuitive
description of the protocol is given. subsection 6.2 presents the corresponding for-
malization.

6.1 Intuitive Description

The goal of the Ibex protocol is the establishment of a forward secure channel be-
tween two users, Alice and Bob. Since Threema does not store the ephemeral secrets
of its users on a centralized server, forward security can only be achieved after one
communication round. Therefore, we assign each party a specific state to reflect the
different states of the protocol and the corresponding security level that it achieves.
The local state of Alice and Bob is of the form state ∈ {⊥, 2DHS, 2DHR, 4DH}. Fig-
ure 9 provides a high-level overview of how the states transition into each other, and
a more formal description is given below.

Alice Bob

⊥ send−−→ 2DHS
init ⊥ recv−−→ 2DHR

2DHS
send−−→ 2DHS 2DHR

recv−−→ 2DHR

2DHS
recv−−→ 4DH response 2DHR

send−−→ 4DH

Figure 9: The possible local states in a channel initiated by Alice.

⊥ The initial state of both parties, when no communication happened between Alice
and Bob so far, is ⊥. Sending a message in the ⊥ state leads to the state 2DHS,
and receiving a message in the ⊥ state leads to the state 2DHR. In this stage,
the sending party Alice possesses Bob’s public-key pkR (and her own private
state stS and key skS). On the other hand, Bob only knows his private state
stB and key skB and obtains Alice’s public key as part of her first message.

2DHS When a party is in the state 2DHS, this means that a 2DH key is established to
communicate with the receiving party. All ciphertexts so far have no forward
security, as no ephemeral secrets of the receiving party are known to the sender.

2DHR A receiver in the state ⊥ gets to the state 2DHR, which means that all incom-
ing ciphertexts are encrypted without ephemeral secrets of the receiver and
thus are not forward secure.

4DH When a sender in the state 2DHS receives a message from the receiver, or the
receiver in the 2DHR state sends a message back to the sender, the ephemeral
secrets of both parties can be used to encrypt messages. Therefore, they
transition to the 4DH state, meaning all exchanged ciphertexts in this state
use ephemeral secrets of both parties and are, therefore, forward secure.
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6.1.1 Intuitive Explanation for Establishment of a Channel

On a high level, a new channel is established in the following way: When Alice
wishes to initiate a communication with Bob for the first time, then the local state
of Alice with respect to Bob is ⊥. This means that no ephemeral secret key has
been established between both parties. Therefore, Alice samples an ephemeral key
pair (x,X) and computes a 2DH key k2DH using its own secret key, the public key
of Bob and the ephemeral secret key x. This 2DH key is used to derive a keychain
key kKC,Alice and an encryption key kEnc,Alice. The encryption key is used to encrypt
the messages, and the keychain key is used to derive the next key of the keychain.

If Bob receives a ciphertext from Alice and the local state of Bob with respect to
Alice is ⊥, then Bob assumes this is a new communication and uses its secret key
together with the public key and the learned ephemeral key X of Alice to derive the
same keychain and encryption keys kKC,Alice and kEnc,Alice.

When Bob answers Alice, he samples a fresh ephemeral key pair (y, Y ) and com-
putes a 4DH key k4DH using the 2DH key k2DH and his ephemeral secret key y, the
public key of Alice and the ephemeral public key X of Alice. This 4DH key has as
input both parties’ static and ephemeral keys due to four parallel Diffie-Hellman key
exchanges. Furthermore, Bob answers with its ephemeral public key Y . After Alice
receives this answer from Bob, both can communicate using a 4DH key since both
ephemeral keys are known to both parties.

6.2 Formal Description

Below we give a formal description of the sending and the receiving algorithm in
Figure 10 and Figure 11, respectively. Since sending and receiving depends on the
state in which the party is, we split up the definition for the sending and receiving
algorithms per the possible states.

6.2.1 Helping Methods

To simplify the exposition of the protocol, we define several methods that are used
within the protocol.

Z ← DH(x, y): Intuitively, this interface abstracts the main functionality of the
Diffie-Hellman key exchange protocols as it takes as input some private ex-
ponent x and some public value y; it outputs Z := yx.

(k0, k1)← KDF(k, nonce): The method KDF(k, nonce) is a key derivation function
(KDF) takes as input some high-entropy key k and some (possibly empty)
string nonce. The output is a pair of independent keys (k0, k1). The general
usage of the function is the expansion of key material, such that multiple
uniform keys can be obtained from a single source. Our formalization is an
application-specific one, meaning that the outputs of KDFs, in general, may
differ. The nonce often serves as a domain separator to make sure that certain
keys are only used with a specific scope of the protocol.

(x,X)← GeneKE(λ): The input of the ephemeral key generation algorithm is the
security parameter λ, it samples a uniformly chosen value x←$ Zp, sets X :=
gx, and outputs the pair (x,X).
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6.2.2 Formal Description of the Protocol

The formalization of the Ibex protocol is shown in Figure 10 for the sending algo-
rithms, and Figure 11 describes the algorithms of the receiver. Within this formal-
ization, all private keys sk are elements of Zp, and the corresponding public keys are
group elements. The protocol consists of the following steps:

Initialization The initialization of the protocol is shown in Lines 00 and 01. The
first line expresses the parsing of the state st[pkR], which encodes in which
local state the communication between the sender and receiver is. Depending
on the local state, the corresponding algorithm is returned.

First sending round send⊥(stS, skS, pkR): This method is used to initialize the
interaction with the receiver for the first time and works as follows. The
sender samples an ephemeral key (Line 02, c.f. Section 6.2.1) and computes
Diffie-Hellman key shares using DH in Line 03. Subsequently, it derives the
keychain key kKC,Alice and the encryption key kEnc,Alice with the help of the key
derivation function KDF. The sender stores the local values in its state (Line
05); it outputs the updated state, the encryption key kEnc,S, and the ciphertext
X∥pkS that is sent to the receiver.

First receiving round recv⊥(stR, skR, c): Once a ciphertext from a new sender ar-
rives, the receiver parses the first message c asX||pkS, consisting of the “public
part” of the Diffie-Hellman tuple and the sender’s public key (c.f. Figure 11,
Line 03). The receiver finishes this part of the protocol analogously to the
sender by first computing the joint key in Line 04 and by deriving the key-
chain key kKC,Alice and the encryption key kEnc,Alice with the help of the key
derivation function KDF in Line 05. The receiver stores the local values in its
state (Line 06) and returns the updated state, the encryption key, and ⊥.

Second sending round send2DHS
(stS, skS, pkR) : If the sender wishes to send more

messages before the receiver responded to the first message, the sender parses
its state stS[pkR] as (2DHS, k2DH, kKC,S, x) (Line 07), it computes the ephemeral
public key as X (Line 08). It updates the keychain with the help of the KDF
in Line 09. Finally, the sender updates its internal state (Line 10) and outputs
this value together with the encryption key and X∥pkS (Line 11).

Second receiver round recv2DHR
(stR, skR, c) : The receiver upon receiving the ci-

phertext c and parsing it into X∥pkS (Line 08), parses its state as (2DHR, k2DH,
kKC,S, X) (Line 09). Moreover, it updates its local keychain in Line (10), as
well as its state (Line 11), and returns these values at the end of this round
(Line 12).

Third sending round send2DHR
(stS, skS, pkR): The third sending round leads to a

4DH secure communication. This means a message encrypted with the key
derived in this sending round achieves forward security. In the first step,
the sender parses its local state (Line 12), computes a fresh ephemeral key
share (y, Y ) (Line 13), and stores all values in k4DH (Line 14). It uses this
key to derive two keychains, one for the sender (Line 15) and one for the
receiver (Line 16). The sender updates its local state (Line 17) and outputs
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the corresponding values at the end of this round (Line 18). Note that the
sender in this round is the initial receiver of the first message.

Third receiving round recv2DHS
(stR, skR, c): The third receiving round is the first

receive that uses 4DH. The receiver parses both the ciphertext c as Y ∥pkS
(Line 13) and its local state (2DHS, k2DH, kKC,S, x) (Line 14). It computes the
joint key k4DH (Line 15) and derives the key stream for the sender (Line 16)
and the receiver (Line 17) based on this key. Finally, the receiver updates its
state (Line 18) and returns the corresponding values (Line 19). Note that the
receiver in this round is the initial sender of the first message.

Fourth sending round send4DH(stS, skS, pkR): The last round of the protocol up-
dates the sender’s key stream and consists of the following steps. First, the
sender parses its local state (Line 19) and updates the key stream (Line 20)
and its state (Line 21), which now contains an updated keychain key. The
new keys are derived using the key-derivation function KDF with the stored
keychain key as input. Finally, it returns the corresponding values (Line 22).

Fourth receiving round recv4DH(stR, skR, c): The receiver updates its keystream
analogously to the fourth sending round, by performing the following step. It
parses c as pkS (Line 20), its state (4DH, kKC,S, kKC,R) (Line 21), and uses the
key derivation function to update its keychain k′KC,S (Line 22) as well as its
own state (Line 23). Finally, it outputs the corresponding values (Line 24).
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Protocol sendKE(stS, skS, pkR)
00 (state,⊥, . . . ,⊥)← stS[pkR]
01 Return sendstate(stS, skS, pkR)

send⊥(stS, skS, pkR)
02 (x,X)← GeneKE(λ)
03 k2DH ← DH(skS, pkR)∥DH(x, pkR)
04 kKC,S, kEnc,S ← KDF(k2DH, ’ke-2dh-<ID-S>’)
05 stS[pkR]← (2DHS, k2DH, kKC,S, x)
06 Return (stS, kEnc,S, X∥pkS)
send2DHS

(stS, skS, pkR)
07 (2DHS, k2DH, kKC,S, x)← stS[pkR]
08 X := gx

09 k′KC,S, kEnc,S ← KDF(kKC,S)
10 stS[pkR]← (2DHS, k2DH, k

′
KC,S, x)

11 Return (stS, kEnc,S, X∥pkS)
send2DHR

(stS, skS, pkR)
12 (2DHR, k2DH, kS, X)← stS[pkR]
13 (y, Y )← GeneKE(λ)
14 k4DH ← k2DH∥DH(y, pkR)∥DH(y,X)
15 kKC,S, kEnc,S ← KDF(k4DH, ’ke-4dh-<ID-S>’)
16 kKC,R, kEnc,R ← KDF(k4DH, ’ke-4dh-<ID-R>’)
17 stS[pkR]← (4DH, kKC,S, kKC,R)
18 Return (stS, kEnc,S, Y ∥pkS)
send4DH(stS, skS, pkR)
19 (4DH, kKC,S, kKC,R)← stS[pkR]
20 k′KC,S, kEnc,S ← KDF(kKC,S)
21 stS[pkR]← (4DH, k′KC,S, kKC,R)
22 Return (stS, kEnc,S, pkS)

Figure 10: Formalization of send in 4DH.
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Protocol recvKE(stR, skR, c)
00 . . . ∥pkS ← c
01 (state,⊥, . . . ,⊥)← stR[pkS]
02 Return recvstate(stR, skR, c)

recv⊥(stR, skR, c)
03 X∥pkS ← c
04 k2DH ← DH(skR, pkS)∥DH(skR, X)
05 kKC,S, kEnc,S ← KDF(k2DH, ’ke-2dh-<ID-S>’)
06 stR[pkS]← (2DHR, k2DH, kKC,S, X)
07 Return (stR, kEnc,S,⊥)
recv2DHR

(stR, skR, c)
08 X∥pkS ← c
09 (2DHR, k2DH, kKC,S, X)← stR[pkS]
10 k′KC,S, kEnc,S ← KDF(kKC,S)
11 stR[pkS]← (2DHS, k2DH, k

′
KC,S, X)

12 Return (stR, kEnc,S,⊥)
recv2DHS

(stR, skR, c)
13 Y ∥pkS ← c
14 (2DHS, k2DH, kKC,S, x)← stR[pkS]
15 k4DH ← k2DH∥DH(skR, Y )∥DH(x, Y )
16 kKC,S, kEnc,S ← KDF(k4DH, ’ke-4dh-<ID-S>’)
17 kKC,R, kEnc,R ← KDF(k4DH, ’ke-4dh-<ID-R>’)
18 stR[pkS]← (4DH, kKC,S, kKC,R)
19 Return (stR, kEnc,S,⊥)
recv4DH(stR, skR, c)
20 pkS ← c
21 (4DH, kKC,S, kKC,R)← stR[pkS]
22 k′KC,S, kEnc,S ← KDF(kKC,S)
23 stR[pkS]← (4DH, k′KC,S, kKC,R)
24 Return (stR, kEnc,S,⊥)

Figure 11: Formalization of recv in 4DH.
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7 Security Proof

In this section, we formally show the security of Ibex. This means we claim the
security of Ibex based on several assumptions in Theorem 2 and prove this theorem
formally. The security of Ibex is based on the (established) assumptions that the
Gap Diffie-Hellman assumption holds and the Key Derivation Function (KDF) is
modeled as a random oracle. We discuss the meaningfulness of these assumptions
in Section 7.1.

Theorem 2. The Ibex protocol is a secure continuous key exchange protocol under
the GDH assumption, assuming all KDFs are modeled as random oracles. That
means if there exists an efficient adversary who can win the continuous key exchange
experiment for the Ibex protocol with a non-negligible advantage AdvIbex(λ), then
there exists an efficient adversary who can break the GDH assumption with non-
negligible probability AdvGDH(λ), where

AdvIbex(λ) ≤ nchall · n2parties · (AdvGDH(λ) +
nratchets
2ℓKDF

).

The probabilities are taken over the random choices of all randomized algorithms,
nchall denotes the number of challenges queried in the key exchange experiment,
nparties the number of spawned parties, nratchets the maximal number of key deriva-
tions, and ℓKDF the output size of the KDF random oracle.

Before formally proving Theorem 2, we outline our proof strategy. We aim to
show that the advantage of any efficient adversary winning the continuous key ex-
change experiment as in Figure 7 is a negligible function in the security parameter.
One challenge in proving this theorem is that the adversary might request many
challenges, i.e., the attacker might try to extract some information about the un-
derlying keys by adaptively querying the corresponding challenge oracle. To handle
this case, we will use a standard hybrid argument over the challenges queried by the
adversary. A hybrid argument is a proof technique that allows reducing the case of
many challenges to the case of a single challenge. In other words, seeing many chal-
lenges does not give the adversary a significant advantage. To apply this technique,
for each fixed intermediate hybrid, we provide a series of game hops that modifies
the experiment ExpbKE,A(λ) towards a security experiment that allows breaking the

GDH assumption whenever an efficient adversary wins ExpbKE,A(λ). The initial game
G0 is a hybrid Hi. In the game G1, we embed the challenge values of the GDH exper-
iment into both the keys of the Sender and the keys of the Receiver. To simulate the
hybrid Hi correctly, we program the KDF random oracle such that the reduction
can answer all oracles queries of the adversary. Calculating the success probability
of this game, we can argue that no efficient adversary against the security of Ibex
can exist in the random oracle model if the GDH assumption holds.

Proof of Theorem 2. In this proof, we formally show that the advantage Adv0 of
any efficient adversary winning the continuous key exchange experiment as in Fig-
ure 7 instantiated with the Ibex protocol as depicted in Figure 10 and Figure 11
is a negligible function in the security parameter. To do so, we assume by con-
tradiction that there exists an efficient adversary A that wins ExpbKE,A(λ) with a
non-negligible advantage. Using this adversary A, we build a reduction from the
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experiment ExpbKE,A(λ) to the experiment GDHA,GGen(λ). As we assume GDH to
be hard, no such efficient adversary can exist, and thus the advantage Adv0 is a
negligible function in the security parameter λ.

To win the experiment ExpbKE,A(λ), an adversary must correctly guess the used
bit b, which is used in the challenge oracle. Here, each challenge key kb output by the
challenge oracle is either the currently used key in a session between two users i and
j or a randomly chosen key. While running the experiment ExpbKE,A(λ), we assume
the adversary A queries exactly nchall many challenge-keys kb, where nchall ∈ poly(λ).
Therefore, the adversary A wins the game ExpbKE,A(λ) with a better probability than
purely guessing when trying to determine the bit used in the set {k1

b , . . . , k
nchall
b } that

equals either {k1
0, . . . , k

nchall
0 } or {k1

1, . . . , k
nchall
1 }.

For these sets, which we refer to as the extreme hybrids, we build intermediate
hybrids Hι := {k1

1, . . . , k
ι
0, k

ι+1
0 , . . . , knchall

0 }, such that the extreme hybrid H0 is the
output of the challenge oracle in the game Exp0KE,A(λ) and the hybrid Hnchall is the

output of the challenge oracle in the game Exp1KE,A(λ).
By our hypothesis, the adversary A can distinguish the extreme hybrids with

non-negligible advantage. Since the total number of intermediate hybrids is poly-
nomial in λ, a non-negligible gap between the extreme hybrids translates into a
non-negligible gap between a pair of neighboring intermediate hybrids. Therefore,
our reduction can efficiently guess the position ι ∈ 1 . . . nchall of this gap with prob-
ability 1

nchall
and we now build a series of game hops, where we consider one hybrid

step Hι at a time. Based on this, we now start a series of game hops with a negligible
transition between neighboring games. Following this approach, we start with an
initial game G0 that equals the original game Exp0KE,A(λ) and end with the original

game Exp1KE,A(λ). Doing so removes complexity from the proof and therefore makes
the proof better understandable. Simultaneously, if we prove that the advantage
of any adversary in winning G0 is negligible, the same holds for the experiment
ExpbKE,A(λ). This follows from the standard hybrid argument as we model the hy-
brid Hι in G0. Therefore, a negligible advantage in winning an intermediate hybrid
Hι implies a negligible difference between the extreme hybrids H0 and Hnchall .

The Game G0. The initial game G0 equals the intermediate hybrid Hι. This means,
the challenge oracle Challenge returns k0 the first ι times and k1 the last nchall − ι
times. In a later game hop, we have to embed the challenge values of GDH into the
keys of the members of session ι. Therefore, the hybrid step guesses the members in
advance. This induces a loss of 1

n2parties
to the remaining advantage of an adversary

against Ibex. A formal description of G0 is given in Figure 12, and we mark all
modifications in gray .

The Game G1. The first game, G1, embeds the challenges of the GDH experiment
in the public keys of the sender and the receiver of the gap session. This gap
session takes place between the parties i and j since the game hops happen in
an intermediate hybrid that has a fixed gap session. For this session, we assume,
without loss of generality, i initializes the communication. Furthermore, we denote
(X, x) as the ephemeral key of i and (Y, y) as the ephemeral key of j for this gap
session. The goal of G1 is to embed the challenge values [a], [b] of the GDH experiment
into both the key-seed k4DH and the key-seed k2DH of this session which have the
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Game G0( i, j , λ)

00 ctrchall ← 0
01 n← 0
02 b′ ← A(1λ)
03 Return b′

Oracle Gen(λ)
04 n← n+ 1
05 (skn, pkn)← GenKE(1

λ)
06 Return pkn

Oracle Send(i, j)
07 (sti, k, c)← sendKE(sti, ski, pkj)
08 Return (k, c)

Oracle Challenge(i, j)
09 ctrchall+ = 1
10 (sti, k0, c)← sendKE(sti, ski, pkj)
11 k1 ← {0, 1}λ
12 if ctrchall < ι : Return (k0, c)

13 if ctrchall > ι : Return (k1, c)

14 Return (kb, c)

Oracle Recv(i, c)
15 (sti, k, pk)← recvKE(sti, ski, c)
16 If in-sync: Return pk
17 Return (k, pk)

Oracle Corrupt(i)
18 Return (ski, sti)

Figure 12: The initial game G0.

following form.

k2DH ← DH(ski, pkj)∥DH(x, pkj)
k4DH ← k2DH∥DH(ski, Y )∥DH(x, Y )

To embed the challenge values in the keys of the two parties i and j, the reduction
must implement a case distinction that considers all options in which the two parties
can be corrupted before and/or after computing the corresponding keys of the two
parties. We model this case distinction using the two binary variables Corri and
Corrj that indicate whether party i or party j are corrupted during the execution of
the experiment. This leads to four possible corruption states:

Corri ∧ Corrj: In this case, the adversary eventually corrupts both parties i and j.
Therefore, the reduction embeds the GDH challenge values into the ephemeral
public keys X and Y .

Corri ∧ ¬Corrj: In this case, the adversary eventually corrupts party i, but not
party j. Thus, the reduction embeds the GDH challenge values into the
ephemeral key X of party i and the static key pkj of party j.

¬Corri ∧ Corrj: In this case, the adversary eventually corrupts party j, but not
party i. Thus, the reduction embeds the GDH challenge values into the
ephemeral key Y of party j and the static key pki of party i.

¬Corri ∧ ¬Corrj: In this case, the adversary does corrupt neither of both parties i
and j. Therefore, the reduction embeds the GDH challenge values into the
static public keys pki and pkj.

Note, that these four different possibilities fully exhaust all possibilities. Since the
reduction has a solution for all four cases, we can now assume, without loss of
generality, that the reduction is in the right corruption state. For better readability,
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we formalize all four cases in G1 unified. We fix whether a party is corrupted in the
game execution at the beginning of G1 via the variables Corri and Corrj. If one of
the two parties is corrupted during the execution of G1, then the GDH challenge is
embedded in the ephemeral key of this party. Else, it is inserted into the static key.
Thus, we update the ephemeral and the static key-generation algorithm accordingly
in Figure 13. These updated key-generation algorithms allow the reduction to answer
to the oracle Corrupt consistently but raise a problem in computing the key-seed k4DH

since, in each case, the reduction cannot compute at least one Diffie-Hellman tuple
that corresponds to DH(a,B) = gab. We address this issue by programming the key
derivation function modeled as a random oracle.

G1 : Programming the KDF RO. When the reduction has to compute KDF(k, nonce)
for key-seed k that should contain the Diffie-Hellman tuple DH(a,B), it runs the
KDF on all computable group elements, as well as with the two group elements [a]
and [b]. When the reduction calls the KDF on these group elements and a nonce, the
KDF returns two keys sampled uniformly at random and stores the query. On each
query of A, the KDF checks, if A queries KDF on at least one input [ab] using the
decisional Diffie-Hellman oracle ODDH of the underlying GDH game and aborts, if A
does so. This abortion corresponds to the reduction winning the GDH experiment
as it learns [ab]. Furthermore, as the game aborts, the programmed KDF answers
consistently for each input if A asks for the programmed random value. A formal
definition of G1 is given in Figure 13.

Game GODDH
1 ( G, [1], [a], [b], i,Corri, j,Corrj , λ)

00 ctrchall ← 0
01 n← 0
02 b′ ← A(1λ)
03 Return b′

Oracle Gen(λ)
04 n← n+ 1
05 (skn, pkn)← GenKE(1

λ)

06 if n = i : ∧¬Corri : pkn = [a]

07 if n = j : ∧¬Corri : pkn = [b]
08 Return pkn

GeneKE(λ, S,R)

09 (ske, pke)← GeneKE(1
λ)

10 if S = i ∧R = j :

11 if Corri : pke = [a], ske = ⊥
12 if Corrj : pke = [b], ske = ⊥
13 Return (ske, pke)

Oracle Send(i, j)
14 (sti, k, c)← sendKE(sti, ski, pkj)
15 Return (k, c)

Oracle Challenge(i, j)
16 ctrchall+ = 1
17 (sti, k0, c)← sendKE(sti, ski, pkj)
18 k1 ← {0, 1}λ
19 if ctrchall < ι : Return (k0, c)
20 if ctrchall > ι : Return (k1, c)
21 Return (kb, c)

Oracle Recv(i, c)
22 (sti, k, pk)← recvKE(sti, ski, c)
23 If in-sync: Return pk
24 Return (k, pk)

Oracle Corrupt(i)
25 Return (ski, sti)

KDF(g1, g2, g3, g4, nonce)
26 for x ∈ 1, . . . , 4 do
27 if gx = ODDH([a], [b]) abort

28 Return KDF(g1, g2, g3, g4, nonce)

Figure 13: The first game G1.
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Game G1 simulates G0 perfectly if it does not abort; this means all changes made
in G1 compared to G0 cannot be detected by any efficient adversary if the game
does not abort in line 27. This is the case, as the GDH challenge values are equally
distributed like the GenKE and GeneKE values. If the game aborts in line 27, the
reduction wins the GDH experiment, as we show in the following claim. Therefore,

AdvAG0
(λ) ≤ AdvAG1

(λ) + Pr[breakGDH].

Claim 1. Let breakGDH be the event where game G1 aborts in line 27. If breakGDH

happens, the reduction successfully finds a solution for the GDH experiment.

Proof. As the KDF is modeled as a random oracle, the reduction learns all inputs to
KDF. The KDF aborts in Line 27, if gx = gab. Therefore, the input gx to the KDF
is a valid solution for the GDH challenge-instance.

Game G1 aborts if the adversary A finds a solution for the GDH experiment.
Thus, the adversary A cannot win G1 if it submits a solution for the GDH experiment
to the KDF oracle. As the KDF is modeled as a random oracle, the challenge keys k0
and k1 are only distinguishable if the adversary A queries the KDF random oracle
with a previous ratchet-key. This means the adversary A must guess such a previous
ratchet-key to obtain an advantage in the game G1.

Claim 2. The advantage of A in winning game G1 is bounded by the output size
ℓKDF of the KDF and the number nratchets of messages the party j has received from
party i. More formally,

AdvAG1
(λ) ≤ nratchets

2ℓKDF
.

Proof. Since the KDF is modeled as a random oracle, the only way to distinguish a
random string k1 ← {0, 1}λ from the output of the KDF on input x is by querying
the KDF on x. If we assume the challenge key is the nratchets-th derivation from the
key-seed, the probability of guessing a random value x that is part of the challenge-
key-ratchet is bounded by nratchets

2ℓKDF
.

Computing the Success Advantage. Using the standard hybrid argument, we have
a loss of the factor nchall due to the guessing of the gap session index. Furthermore,
the reduction wins the GDH experiment if the guess of i and j is correct, which
introduces a loss of the factor n2parties. This leads to the following advantage term:

AdvIbex,A(λ) ≤ nchall · n2parties · AdvG0,A(λ)

= nchall · n2parties · AdvG1,A(λ)

≤ nchall · n2parties ·
(nratchets

2ℓKDF
+ Pr[breakGDH]

)
.

Due to the GDH assumption, the advantage of any adversary in breaking the Ibex
protocol AdvIbex,A(λ) is polynomially bounded by a negligible function. Therefore,
no efficient adversary against Ibex can exist.
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7.1 Discussion of Assumptions

The core assumption made in our proof is that the Gap-Diffie-Hellman (GDH) prob-
lem is hard for the used (elliptic curve) group in the random oracle model (ROM).
Analyses of similar protocols either follow the same approach (e.g., in [12, 13, 14,
11]). Alternatively (e.g., in [15, 16, 17]), it is assumed that the composition of Diffie-
Hellman key exchange in the (elliptic curve) group and subsequent key derivation
from the resulting key (via a key derivation function, hash function, or pseudo-
random function) fulfills the PRF-ODH3 assumption [18]. For details about many
variants of the PRF-ODF assumption and an extensive discussion about its rela-
tion to the above-mentioned alternative via GDH and ROM, we refer the interested
reader to the work by Brendel et al. [18].

While the ROM is established in analyses of real-world protocols, it is impor-
tant to mention that it is an idealization that cannot be instantiated in the real
world. Thus, although using the ROM simplifies protocol analyses and tames their
complexity, in theory, cryptographers aim to avoid relying on the ROM whenever
analyses without it lead to meaningful results. Nevertheless, in our concrete exam-
ple, the only known instantiation of the PRF-ODH assumption is based on the GDH
assumption via the ROM. Thus, we consider avoiding the ROM by only hiding it
using the PRF-ODH assumption of little value.

We mainly chose to rely on GDH and ROM directly because the Diffie-Hellman
key exchanges embedded in the 2DH and 4DH protocols do not align with the PRF-
ODH assumption. Therefore, for our analysis, we would have needed to introduce
new, untested variants of the PRF-ODH assumption, or we would have needed to
consider variants of 2DH and 4DH that do not align with what is implemented and
used in practice.

As mentioned, the ROM is established in the cryptographic literature because
it supports clarity of security proofs. Taking all above aspects together, we believe
our approach is the most suitable for our analysis. Nevertheless, we believe a similar
result can be obtained by following an alternative path.

8 Practical Instantiation

In Theorem 2, we assume the used key-derivation function of Ibex to be instanti-
ated by a random oracle. Yet, in the real protocol, Ibex uses BLAKE2b once in a
keyed version and once in an unkeyed version. Therefore, in this section, we show
that Theorem 2 carries over to the practical Ibex construction by showing that the
keyed BLAKE2b is a pseudorandom function and the unkeyed BLAKE2b achieves
indifferentiability.

Unkeyed BLAKE2b. Since the unkeyed BLAKE2b has no hidden information, it
can not be shown to be a PRF. Therefore, we show the indifferentiability of the
unkeyed BLAKE2b. The notion of indifferentiability was introduced by Maurer et
al. in TCC 2004 [7] and adopted by Coron et al. in Crypto 2005 for the context
of hash functions [6]. At a high-level, indifferentiability measures how close a hash
function behaves as a random oracle. More formally:

3Short for Pseudo-Random Function Oracle-Diffie-Hellman.
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Definition 10 (ε−indifferentiability of hash functions [8]). Let F be a hash function
based on an ideal primitive f and R be a random oracle, and S be a simulator with
access to R. We say that F f is ε−indifferentiable from R if for any adversary D,
there exists a simulator S such that the advantage of the adversary is bound by

AdvindiffF f ,SR(D) = |Pr
[
DF,f = 1

]
− Pr

[
DR,S = 1

]
| ≤ ε.

The work of Luykx et al. [9] shows that the BLAKE2 compression function is
indifferentiable to a random compression function.

Lemma 2.1 (Indifferentiability of BLAKE2 Compression Function). The
BLAKE2 compression function is indifferentiable from a random compression func-
tion up to about 2

n
2 queries under the assumption that the underlying block cipher

is randomly drawn [9].

The indifferentiability of the BLAKE2 compression function justifies the usage
of the RO instead of BLAKE2b in Theorem 2, since the following theorem holds.

Theorem 3. Let C be a cryptosystem with oracle access to an ideal primitive F . Let
F be an algorithm such that F based on f is indifferentiable from the random oracle
R. Then the cryptosystem C is at least as secure in the f -model with algorithm F
as in the R-model [6, 7].

Keyed BLAKE2b. Since the unkeyed BLAKE2b is indifferentiable to a random or-
acle, it can be shown that BLAKE2b(k, ·) for a random key k is a pseudorandom
function [9].

Definition 11 (Pseudorandom Function). Let F : {0, 1}λ×{0, 1}n → {0, 1}n be an
efficient, length-preserving, keyed function. F is a pseudorandom function (PRF) if
for all PPT distinguishers D, there exists a negligible function negl such that∣∣Pr[DF (k,·)(1λ) = 1

]
− Pr

[
Df(·)(1λ) = 1

]∣∣ ≤ negl(λ),

where the first probability is taken over the uniform choice of k ∈ {0, 1}λ and the
randomness of D, and the second probability is taken over the uniform choice of
f ∈ Funcn and the randomness of D.

Combination of unkeyed and keyed BLAKE2b. The Ibex protocol does not use a
single execution of BLAKE2b as a KDF but a nested combination of both that is
defined via

KDF(g1, g2, g3, g4, nonce) = BLAKE2b(BLAKE2b(g1, g2, g3, g4), nonce).

The inner BLAKE2b execution hashes the four group elements to a 64-bit value
which is used as a key for the keyed outer BLAKE2b instance. Since the unkeyed
BLAKE2b achieves indifferentiability, this hashed key is indistinguishable from ran-
dom as long as at least one of the four group elements is unknown to any distin-
guisher [9]. Therefore, by the PRF security of the keyed outer BLAKE2b, the nested
construction is indistinguishable from a random function as long as at least one of
the four group elements is unknown to any distinguisher. This justifies the usage of
the random oracle instead of the nested BLAKE2b in Theorem 2.
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9 Limitations of Our Analysis

While our security analysis encompasses various aspects, there are certain conditions
under which the analysis may not hold unconditionally.

• Firstly, the Ibex protocol operates in a “double encryption” setup where the
ciphertext is encrypted under the static key pair. This introduces a level of
circularity not covered by our analysis. Proving circular security is a challeng-
ing task in general, and it was demonstrated by Boneh, Halevi, Hamburg, and
Ostrovsky in 2008 that one-way security does not imply circular security [19].

• Secondly, our analysis assumes that the contacts’ public keys have either been
verified out-of-band (either by scanning the other parties’ QR codes, manual
comparison or by a ThreemaWork administrator), or the public key infrastruc-
ture (PKI) is honest. The case of unverified public keys and a compromised
PKI has not been accounted for as it would introduce additional complexity.

• Third, Threema also supports a desktop application connecting to the smart-
phone version. The user reads a QR code to connect both applications and
may secure the access to the desktop using a password. The security and
privacy in this setting is also not part of this analysis.

10 Recommendations for Further Development

Post Quantum Security. Rapid advances in quantum computing pose a significant
threat to the security of current cryptographic systems, including key exchange pro-
tocols. Quantum computers have the potential to efficiently solve certain mathemat-
ical problems that are currently intractable for classical computers. In particular,
they can rapidly compute discrete logarithms, which is the basis of widely used cryp-
tographic algorithms such as El-Gamal and Diffie-Hellman. As quantum computers
become more powerful, traditional key exchange protocols based on Diffie-Hellman
assumptions will be vulnerable to attacks. Given this impending challenge, it would
be beneficial to invest in developing post-quantum secure key exchange protocols.

Group Key Management. The current strategy for group key exchange of Threema
utilizes a one-to-one key exchange mechanism. Threema uses this approach to mit-
igate the leaking of a potential group’s existence and structure. Yet, this approach
falls short if an adversary can analyze the communication pattern of messages ex-
changed via the Threema server. Instead, we propose to use a different approach
proposed in [21] that anonymizes the sender and the receiver of a message from the
server’s point of view. Further techniques to hide the existence of a group (and pos-
sibly its size) w.r.t. a malicious server might require the integration of techniques
similar to oblivious RAM (ORAM) [22]. At a conceptual level, ORAM is a crypto-
graphic mechanism that obfuscates read and write actions performed on a database
maintained by an untrustworthy server. We propose investigating this avenue to
augment users’ privacy within a group context.
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Downgrade Attacks. In situations where two users’ protocol versions do not allow
the Ibex protocol to be used, the current fallback option is to notify the user in the
UI and revert to the old protocol, which does not achieve forward security. However,
this approach is vulnerable to tampering attacks on the directory server. In detail,
an adversary could modify the feature mask on the directory server to bypass Ibex
and use the fallback protocol. Therefore, we propose to embed the protocol version
in an associated data field to mitigate such attacks. By incorporating this enhance-
ment, Ibex can ensure the integrity of communications during fallback scenarios and
maintain secure and reliable communications.

Penetration Testing. It is important to note that our security analysis does not
evaluate the specific implementation of the Ibex protocol in Threema. The anal-
ysis focuses on the protocol design and its theoretical/conceptual security proper-
ties. However, a comprehensive evaluation of the actual implementation, including
vulnerability assessments and penetration testing, should be conducted by quali-
fied penetration testers. Evaluating the implementation ensures that any potential
implementation-specific flaws or vulnerabilities are identified and addressed, pro-
viding a more holistic assessment of the overall security of Threema’s messaging
platform.

11 Conclusion

This work represents a significant milestone as it provides the first formal security
analysis of the Ibex protocol. In the past, theoretical security analyses have proven
their effectiveness and value in the field of cryptography and information security.
Theoretical security analyses are essential for evaluating the strength and reliability
of cryptographic protocols and systems. By subjecting these protocols to rigorous
examination, researchers can identify potential vulnerabilities, analyze their secu-
rity properties, and assess their resilience against various types of attacks. Through
these analyses, theoretical models can provide insights into the underlying security
assumptions, threat models, and possible weaknesses in the design or implemen-
tation of protocols. Through a comprehensive examination, we have successfully
evaluated the protocol’s adherence to its promised security properties. The results
of our analysis reveal that the Ibex protocol satisfactorily meets the desired security
requirements. Notably, our investigation did not uncover any flaws or vulnerabilities
within the protocol. This outcome underscores the sound cryptographic design of
the Ibex protocol, as it has withstood a rigorous security analysis, and we were able
to prove the security of Ibex formally. The absence of significant weaknesses further
strengthens the confidence in the protocol’s security guarantees and enhances its
overall reliability.
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	Abstract
	Summary of the Findings

	Introduction
	Introduction to Messengers
	High-Level Overview of the Cryptographic Goals of Threema

	Basics
	Provable Security
	Hardness Assumptions and Mathematical Foundations
	The Diffie-Hellman Key Exchange
	The Random Oracle Model

	Formalization of the Functionality
	Functionality of Ibex
	Continuous Key Exchange Protocols
	Channel Protocols

	Formalization of the Security Properties
	Security Properties in General
	Security Properties of Continuous Key Exchange
	Game-based Definition for Continuous Key Exchange
	Security Properties of Simple Channels
	Game-based Definition for Authenticated Encryption

	Formalization of the Protocol
	Intuitive Description
	Formal Description

	Security Proof
	Discussion of Assumptions

	Practical Instantiation
	Limitations of Our Analysis
	Recommendations for Further Development
	Conclusion

